Fandom

How To Wiki

How to design a flyback transformer

1,795pages on
this wiki
Add New Page
Talk0 Share
Warning: This page is incomplete, use this article with caution. Please help finish it




The transformer for a flyback converter is used as the converters inductor as well as an isolation transformer.

Variables and acronymsEdit

  • Universal constants
    • Permittivity of free space \mu_o (Wb A−1 m−1)
      • \mu_o = 4\pi 10^{-7} (Wb A−1 m−1)


  • Wire variables:
    • \rho, Wire resistivity (Ω-cm)
    • I_{tot}, Total RMS winding currents (A)
    • I_{m,max}, Peak magnetizing current (A)
    • I_{RMS}, Max RMS current, worst case (A)
    • P_{cm}, Allowed copper loss (W)
    • A_c, Cross sectional area of wire (cm2)


  • Xformer/inductor design parameters
    • n_1, n_2, turns (turns)
    • L_m, Magnetizing inductance (for an xformer) (H)
    • L, Inductance (H)
    • K_u, Winding fill factor (unitless)
    • B_{max}, Core maximum flux density (T)


  • Core parameters
    • EC35, PQ 20/16, 704, etc, Core type (mm)
    • K_g, Geometrical constant (cm5)
    • K_{gfe}, Geometrical constant (cmx)
    • A_c, Cross-sectional area (cm2)
    • W_A, Window area (cm2)
    • MLT, Mean length per turn (cm)
    • l_m, Magnetic path length (cm)
    • l, or l_g, Air gap length (cm)
    • \mu, Permittivity (Wb A−1 m−1)
    • \mu_r, Relative Permittivity (unitless)
      • \mu = \mu_o \mu_r
Acronyms
  • RMS: root-mean-squared - x_\text{rms} = \sqrt{ \langle x^2 \rangle} \,\! (where \langle \ldots \rangle denotes the arithmetic mean)
  • MLT: mean length turn
  • AWG: American wire gauge

Initial calculationsEdit

Variables
  • V_o - output voltage [V]
  • V_{in} - input voltage [V]
  • V_D - diode voltage drop [V]
  • V_{Rds} - transistor on voltage [V]
  • N - turns ratio [unitless]
  • D - duty cycle [unitless]
Calculate turns ratio

\frac{ V_o + V_D }{ V_{in} - V_{Rds} } = \frac{ 1 }{ N } * \left ( \frac{ D_{max} }{ 1 - D_{max} } \right )

  • Diode
    • Rectifier: V_D = 0.8V
    • Schottky diode: V_D = ?

Inductance calculationsEdit

The inductance of the transformer, L_m, controls the current ripple.

Say you want a current ripple 50% of average current.

\Delta i = 0.5 * I


Solve for L_m

let n = \frac{n_2}{n_1}


I=\frac{n}{D'}I_{load}


\Delta i = \frac{nI_{load}}{2D'}


L_m = \frac{V_g D T_s}{2 \Delta i}


L_m=\frac{\mu A_c n_1^2}{l}

The permittivity of free-space is so much larger than the permittivity the transformer material, that the magnetic path length, l, can be estimated to be the air gap length, l_g. so l = l_g and

L_m=\frac{\mu_o A_c n_1^2}{l_g}

Solve for n

Minimize total power loss: P_{tot} = P_{fe} + P_{cu}
Core loss: P_{fe} = K_{fe} \Delta B^\beta A_c l_m

B_{ac} = \frac{L_m \Delta i}{n_1 A_c}
The \beta and K_{fe} are in the core material's datasheets

Core calculationsEdit

Core selectionEdit

Variables
  • P_{Fe} - power loss in the core [W]
  • B_{sat} - saturation flux density [T]
  • B_{max} - max flux density [T]
  • \Delta B  - change in flux density [T], aka B_{ac}
  • A_w - winding area [cm^2]
  • A_e - effective cross-setional area of the core [cm^2]
  • AP - Area Product [cm^4]
  • K_u - window utilization factor, or fill factor [unitless]
  • N_P - number of turns on the primary [unitless]
  • N_S - number of turns on the secondary [unitless]
  • N_B - number of turns on the bias [unitless]
  • \mu_o - permittivity of free space (air) \mu_o = 2 \pi 10^{-7} [H/m]


Material specifications
Grade B_{sat} [T] Specific Power Losses @100 °C [W/cm3] Manufacturer
B2 0.36 P_{Fe} = 1.15 * 10^{-5} * \Delta B^{2.26} * f_{sw}^{1.11} THOMSON
3C85 0.33 P_{Fe} = 1.54 * 10^{-7} * \Delta B^{2.62} * f_{sw}^{1.54} PHILIPS
N67 0.38 P_{Fe} = 8.53 * 10^{-7} * \Delta B^{2.54} * f_{sw}^{1.36} EPCOS (ex S+M)
PC30 0.39 P_{Fe} = 1.59 * 10^{-6} * \Delta B^{2.58} * f_{sw}^{1.32} TDK
F44 0.4 P_{Fe} = 2.39 * 10^{-6} * \Delta B^{2.23} * f_{sw}^{1.26} MMG


Calculate minimal AP needed

AP_{min} = 10^3 * \left ( \frac{ L_p * I_{Prms} }{ \Delta T^{ \frac{1}{2} } * K_u * B_{max} } \right )^{1.316} [cm^4]

  • B_{max} should be less than B_{sat}, to avoid core saturation. for example B_{sat} > 0.3T, then for a conservative calculation use B_{max} = 0.25T
  • \Delta T = T_{max} - T_{amb}
    Generally T_{max} = 100C and T_{amb}=30C
  • Using K_u=0.3 for off-line power supplies is a good estimate
Calculate minimum number of primary and secondary turns
  • N_{P-min} = \frac{ L_p * I_{pk} * 10^4 }{ B_{max} * A_e }
  • N_{S-min} = \frac{ N_{P-min} }{ N }
Calculate actual number of turn on the primary and secondary to be used.
  • N_S: Round up N_{S-min} to the nearest integer
  • N_P = N * N_S
Calculate air gap

l_g = \frac{ \mu_o * N_P^2 * A_e * 10^{-2} }{ L_p }

Current calculationsEdit

Variables
  • I_{pk} - Ripple current max peak
  • I_{min} - Ripple current min peak
  • \Delta I_{pp} - pk-pk ripple current I_{pk} - I_{min}
Peak current

I_{pk} = \left ( \frac{ I_{out-max} }{ N } \right ) * \left ( \frac{ 1 }{ 1 - D_{max} } \right ) + \frac{ \Delta I_L }{ 2 }

DC current

I_{dc}=D \frac{I_{pk}+I_{min}}{2}

RMS current

I_{rms}=\sqrt{ D \left ((I_{pk}+I_{min}) + \frac{1}{3} (I_{pk}+I_{min})^2 \right )}

AC current

I_{rms}=\sqrt{ I_{rms}^2 - I_{dc}^2 }


Power LossEdit

P_{tot}=P_{fe}+P_{cu}

ReferencesEdit

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Also on Fandom

Random Wiki